Abstract
AbstractThe 2023 M7.8 Kahramanmaraş/Pazarcik earthquake was larger and more destructive than what had been expected. Here we analyzed nearfield seismic records and developed a dynamic rupture model that reconciles different currently conflicting inversion results and reveals spatially non-uniform propagation speeds in this earthquake, with predominantly supershear speeds observed along the Narli fault and at the southwest (SW) end of the East Anatolian Fault (EAF). The model highlights the critical role of geometric complexity and heterogeneous frictional conditions in facilitating continued propagation and influencing rupture speed. We also constrained the conditions that allowed for the rupture to jump from the Narli fault to EAF and to generate the delayed backpropagating rupture towards the SW. Our findings have important implications for understanding earthquake hazards and guiding future response efforts and demonstrate the value of physics based dynamic modeling fused with near-field data in enhancing our understanding of earthquake mechanisms and improving risk assessment.
Funder
Caltech Terrestrial Hazard Observation and Reporting Center
NSF | GEO | Division of Earth Sciences
Department of the Interior | United States Geological Survey | Wyoming-Montana Water Science Center
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献