Groundwater deeper than 500 m contributes less than 0.1% of global river discharge

Author:

Ferguson GrantORCID,McIntosh Jennifer C.,Jasechko ScottORCID,Kim Ji-HyunORCID,Famiglietti James S.ORCID,McDonnell Jeffrey J.

Abstract

AbstractGroundwater is one of the largest reservoirs of water on Earth but has relatively small fluxes compared to its volume. This behavior is exaggerated at depths below 500 m, where the majority of groundwater exists and where residence times of millions to even a billion years have been documented. However, the extent of interactions between deep groundwater (>500 m) and the rest of the terrestrial water cycle at a global scale are unclear because of challenges in detecting their contributions to streamflow. Here, we use a chloride mass balance approach to quantify the contribution of deep groundwater to global streamflow. Deep groundwater likely contributes <0.1% to global streamflow and is only weakly and sporadically connected to the rest of the water cycle on geological timescales. Despite this weak connection to streamflow, we found that deep groundwaters are important to the global chloride cycle, providing ~7% of the flux of chloride to the ocean.

Funder

National Science Foundation

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Canadian Institute for Advanced Research

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3