Abstract
AbstractOcean alkalinity enhancement (OAE) reduces the concentration of dissolved carbon dioxide (CO2) in seawater, leading to atmospheric carbon dioxide removal (CDR). Here we report laboratory experiments and a field-trial of alkalinity enhancement through addition of magnesium hydroxide to wastewater and its subsequent discharge to the coastal ocean. In wastewater, a 10% increase of average alkalinity (+0.56 mmol/kg) led to a 74% reduction in aqueous CO2 (−0.41 mmol/kg) and pH increase of 0.4 units to 7.78 (efficiency 0.73 molCO2/mol alkalinity). The alkalinization signal was limited to within a few metres of the ocean discharge, evident as 27.2 μatm reduction in CO2 partial pressure and 0.017 unit pH increase, and was consistent with rapid dilution of the alkali-treated wastewater. While this proof of concept field trial did not achieve CDR due to its small scale, it demonstrated the potential of magnesium hydroxide addition to wastewater as a CDR solution.
Funder
RCUK | Natural Environment Research Council
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. IPCC. Summary for Policymakers. In Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 1–24 (Cambridge University Press, Cambridge, 2022). https://doi.org/10.1017/9781009157940.001.
2. Buck, H. J., Carton, W., Lund, J. F. & Markusson, N. Why residual emissions matter right now. Nat. Clim. Change 13, 351–358 (2023).
3. NationalAcademiesofSciencesEngineeringandMedicine. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration. (The National Academies Press, 2022).
4. Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
5. Revelle, R. & Suess, H. E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27 (1957).