Geothermal energy as a means to decarbonize the energy mix of megacities

Author:

Vargas Carlos A.ORCID,Caracciolo Luca,Ball Philip J.

Abstract

AbstractThe global number of megacities is projected to increase from 33 to 43 by 2030. Megacities are critical for the world’s economy; however, their resource management is particularly challenging. The increase of energy demand, in parallel to population growth and climate change, requires urgent investment in sustainable energies. We examine the megacities of Bogotá, Los Angeles, and Jakarta and reveal that the potential geothermal resource base is enough to cover the residential electricity demand by 1.14, 4.25, 1.84 times, respectively. Geothermal energy, a clean baseload resource independent from weather conditions, could significantly contribute to energy needs, improved air quality, and the decarbonization of the world’s megacities. We conclude that it is critical that governments and public are educated about the benefits of geothermal. Moreover, those energy policies coupled with investment in research and development are needed to ensure geothermal is successfully integrated into the future energy mix.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference59 articles.

1. Ritchie, H. & Roser, M. Energy. Published online at OurWorldInData.org. Accessed 08/28/2021, Retrieved from: https://ourworldindata.org/energy (2021).

2. UN, 2018. Revision of World Urbanization Prospects, United Nations. Accessed 12/12/2020, https://population.un.org/wup/ (2018)

3. IEA. World energy outlook. Paris: International Energy Agency, https://www.iea.org/topics/world-energy-outlook (2008).

4. Seto, K. C. et al. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. R. et al.) (Cambridge University Press, 2014).

5. Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3