Discovery of sparse, reliable omic biomarkers with Stabl

Author:

Hédou Julien,Marić IvanaORCID,Bellan GrégoireORCID,Einhaus Jakob,Gaudillière Dyani K.ORCID,Ladant Francois-Xavier,Verdonk FranckORCID,Stelzer Ina A.ORCID,Feyaerts DorienORCID,Tsai Amy S.ORCID,Ganio Edward A.,Sabayev Maximilian,Gillard Joshua,Amar Jonas,Cambriel Amelie,Oskotsky Tomiko T.,Roldan AlennieORCID,Golob Jonathan L.,Sirota MarinaORCID,Bonham Thomas A.,Sato MasakiORCID,Diop Maïgane,Durand Xavier,Angst Martin S.ORCID,Stevenson David K.,Aghaeepour NimaORCID,Montanari Andrea,Gaudillière BriceORCID

Abstract

AbstractAdoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling. Evaluation of Stabl on synthetic datasets and five independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used sparsity-promoting regularization methods while maintaining predictive performance; it distills datasets containing 1,400–35,000 features down to 4–34 candidate biomarkers. Stabl extends to multi-omic integration tasks, enabling biological interpretation of complex predictive models, as it hones in on a shortlist of proteomic, metabolomic and cytometric events predicting labor onset, microbial biomarkers of pre-term birth and a pre-operative immune signature of post-surgical infections. Stabl is available at https://github.com/gregbellan/Stabl.

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3