Spatial modeling connecting childhood atopic dermatitis prevalence with household exposure to pollutants

Author:

Ratley GraceORCID,Zeldin Jordan,Sun Ashleigh A.,Yadav Manoj,Chaudhary Prem Prashant,Myles Ian A.ORCID

Abstract

Abstract Background Atopic dermatitis (AD) is a chronic, inflammatory disease characterized by dry, pruritic skin. In the U.S., the prevalence of AD has increased over three-fold since the 1970s. We previously reported a geographic association between isocyanate-containing air pollution and AD as well as mechanistic data demonstrating that isocyanates induce skin dysbiosis and activate the host itch receptor TRPA1. However, non-spatial models are susceptible to spatial confounding and may overlook other meaningful associations. Methods We added spatial analysis to our prior model, contrasting pollution data with clinical visits. In addition, we conducted a retrospective case-control survey of childhood exposure to BTEX-related products. Finally, we assessed implicated compounds, in pure form and as part of synthetic fabric, for their effect on the growth and metabolism of skin commensal bacteria. Results Spatial analysis implicate benzene, toluene, ethylbenzene, and, most significantly, xylene (BTEX) compounds. Survey odds ratios for AD were significant for xylene-derived polyester bed sheets (OR = 9.5; CI 2.2–40.1) and diisocyanate-containing wallpaper adhesive (OR = 6.5; CI 1.5–27.8). Staphylococcus aureus lives longer on synthetic textiles compared to natural textiles. Meanwhile, synthetic fabric exposure shifts the lipid metabolism of health-associated commensals (Roseomonas mucosa and S. epidermidis) away from therapeutic pathways. Conclusions We propose that BTEX chemicals in their raw forms and in synthetic products represent a unifying hypothesis for environmentally induced AD flares through their ability to create dysbiosis in the skin microbiota and directly activate TRPA1. Unequal distribution of these pollutants may also influence racial disparities in AD rates.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3