Multimodal MRI improves diagnostic accuracy and sensitivity to longitudinal change in amyotrophic lateral sclerosis

Author:

Pisharady Pramod KumarORCID,Eberly Lynn E.,Adanyeguh Isaac M.,Manousakis Georgios,Guliani Gaurav,Walk DavidORCID,Lenglet ChristopheORCID

Abstract

Abstract Background Recent advances in MRI acquisitions and image analysis have increased the utility of neuroimaging in understanding disease-related changes. In this work, we aim to demonstrate increased sensitivity to disease progression as well as improved diagnostic accuracy in Amyotrophic lateral sclerosis (ALS) with multimodal MRI of the brain and cervical spinal cord. Methods We acquired diffusion MRI data from the brain and cervical cord, and T1 data from the brain, of 20 participants with ALS and 20 healthy control participants. Ten ALS and 14 control participants, and 11 ALS and 13 control participants were re-scanned at 6-month and 12-month follow-ups respectively. We estimated cross-sectional differences and longitudinal changes in diffusion metrics, cortical thickness, and fixel-based microstructure measures, i.e. fiber density and fiber cross-section. Results We demonstrate improved disease diagnostic accuracy and sensitivity through multimodal analysis of brain and spinal cord metrics. The brain metrics also distinguished lower motor neuron-predominant ALS participants from control participants. Fiber density and cross-section provided the greatest sensitivity to longitudinal change. We demonstrate evidence of progression in a cohort of 11 participants with slowly progressive ALS, including in participants with very slow change in ALSFRS-R. More importantly, we demonstrate that longitudinal change is detectable at a six-month follow-up visit. We also report correlations between ALSFRS-R and the fiber density and cross-section metrics. Conclusions Our findings suggest that multimodal MRI is useful in improving disease diagnosis, and fixel-based measures may serve as potential biomarkers of disease progression in ALS clinical trials.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3