Prospective multicenter study using artificial intelligence to improve dermoscopic melanoma diagnosis in patient care

Author:

Heinlein LukasORCID,Maron Roman C.,Hekler Achim,Haggenmüller Sarah,Wies ChristophORCID,Utikal Jochen S.ORCID,Meier FriedegundORCID,Hobelsberger Sarah,Gellrich Frank F.,Sergon Mildred,Hauschild Axel,French Lars E.ORCID,Heinzerling Lucie,Schlager Justin G.,Ghoreschi KamranORCID,Schlaak MaxORCID,Hilke Franz J.,Poch Gabriela,Korsing Sören,Berking CarolaORCID,Heppt Markus V.ORCID,Erdmann MichaelORCID,Haferkamp Sebastian,Drexler Konstantin,Schadendorf DirkORCID,Sondermann WiebkeORCID,Goebeler MatthiasORCID,Schilling BastianORCID,Krieghoff-Henning Eva,Brinker Titus J.ORCID

Abstract

Abstract Background Early detection of melanoma, a potentially lethal type of skin cancer with high prevalence worldwide, improves patient prognosis. In retrospective studies, artificial intelligence (AI) has proven to be helpful for enhancing melanoma detection. However, there are few prospective studies confirming these promising results. Existing studies are limited by low sample sizes, too homogenous datasets, or lack of inclusion of rare melanoma subtypes, preventing a fair and thorough evaluation of AI and its generalizability, a crucial aspect for its application in the clinical setting. Methods Therefore, we assessed “All Data are Ext” (ADAE), an established open-source ensemble algorithm for detecting melanomas, by comparing its diagnostic accuracy to that of dermatologists on a prospectively collected, external, heterogeneous test set comprising eight distinct hospitals, four different camera setups, rare melanoma subtypes, and special anatomical sites. We advanced the algorithm with real test-time augmentation (R-TTA, i.e., providing real photographs of lesions taken from multiple angles and averaging the predictions), and evaluated its generalization capabilities. Results Overall, the AI shows higher balanced accuracy than dermatologists (0.798, 95% confidence interval (CI) 0.779–0.814 vs. 0.781, 95% CI 0.760–0.802; p = 4.0e−145), obtaining a higher sensitivity (0.921, 95% CI 0.900–0.942 vs. 0.734, 95% CI 0.701–0.770; p = 3.3e−165) at the cost of a lower specificity (0.673, 95% CI 0.641–0.702 vs. 0.828, 95% CI 0.804–0.852; p = 3.3e−165). Conclusion As the algorithm exhibits a significant performance advantage on our heterogeneous dataset exclusively comprising melanoma-suspicious lesions, AI may offer the potential to support dermatologists, particularly in diagnosing challenging cases.

Funder

Bundesministerium für Gesundheit

Publisher

Springer Science and Business Media LLC

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3