Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain

Author:

Bhattacharya Arjun,Vo Daniel D.ORCID,Jops Connor,Kim Minsoo,Wen Cindy,Hervoso Jonatan L.,Pasaniuc BogdanORCID,Gandal Michael J.ORCID

Abstract

AbstractMethods integrating genetics with transcriptomic reference panels prioritize risk genes and mechanisms at only a fraction of trait-associated genetic loci, due in part to an overreliance on total gene expression as a molecular outcome measure. This challenge is particularly relevant for the brain, in which extensive splicing generates multiple distinct transcript-isoforms per gene. Due to complex correlation structures, isoform-level modeling from cis-window variants requires methodological innovation. Here we introduce isoTWAS, a multivariate, stepwise framework integrating genetics, isoform-level expression and phenotypic associations. Compared to gene-level methods, isoTWAS improves both isoform and gene expression prediction, yielding more testable genes, and increased power for discovery of trait associations within genome-wide association study loci across 15 neuropsychiatric traits. We illustrate multiple isoTWAS associations undetectable at the gene-level, prioritizing isoforms of AKT3, CUL3 and HSPD1 in schizophrenia and PCLO with multiple disorders. Results highlight the importance of incorporating isoform-level resolution within integrative approaches to increase discovery of trait associations, especially for brain-relevant traits.

Funder

U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

U.S. Department of Health & Human Services | NIH | National Cancer Institute

SFARI Bridge to Independence Award

Publisher

Springer Science and Business Media LLC

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3