Vagus nerve stimulation enhances the cholinergic anti-inflammatory pathway to reduce lung injury in acute respiratory distress syndrome via STAT3

Author:

Li Sheng,Qi Di,Li Jia-ni,Deng Xin-yu,Wang Dao-xin

Abstract

AbstractThe cholinergic anti-inflammatory pathway (CAIP) is important for antagonizing inflammation and treating several diseases, including acute respiratory distress syndrome (ARDS), and is related to vagus nerve integrity. However, its underlying pathophysiological mechanism is still unclear. We hypothesized that CAIP regulates lung injury repair after ARDS through the STAT3 signaling pathway, which is an important downstream effector of α7nAchR. We enhanced CAIP activity by subjecting rats to vagus nerve stimulation (VNS), and administered the α-7 acetylcholine receptor (α7nAchR) agonist and antagonist to determine whether VNS can reduce lung injury by regulating the pulmonary inflammatory response through CAIP. After being subjected to VNS, the secretion of TNF-α and IL-1β was decreased, while the level of IL-10 was increased in the rat model of ARDS. Moreover, VNS treatment reduced lung mRNA levels of M1 macrophage markers, while increased those of M2 macrophage markers. The expression of Caspase-1 decreased, while that of STAT3 increased in lung tissue after VNS treatment. The aforementioned effects of VNS were reversed by cutting the cervical vagus efferent branch and blocking α7nAchR. These findings suggest that VNS inhibits the ARDS inflammatory response by promoting CAIP activity. Next, we used lentivirus knockdown of STAT3 expression to explore the mechanism of VNS through CAIP on lung inflammation in ARDS model rats. VNS activates α7nAchR, increases STAT3 expression, reduces Caspase-1 expression, suppresses inflammation by inhibiting inflammatory pyroptosis and M1 to M2 macrophage transformation, which may constitute the main mechanism of VNS action in ARDS.

Funder

National Natural Science Foundation for Young Scholars of China

Natural Science Foundation of Chongqing

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3