HOOK3 suppresses proliferation and metastasis in gastric cancer via the SP1/VEGFA axis

Author:

Yang Kexi,Li Juntao,Zhu Jinghan,Chen Yuqi,He Yuxin,Wang JiayuORCID,Shen Kanger,Wang Kun,Shi TongguoORCID,Chen WeichangORCID

Abstract

AbstractHOOK3, a member of the human hook microtubule-tethering protein family, has been implicated in the progression of cancer. However, the role of HOOK3 in the pathogenesis of gastric cancer (GC) remains incompletely understood. In this study, we investigated the expression of HOOK3 protein in GC tissues using immunohistochemistry (IHC). The findings of our study indicate that the expression levels of HOOK3 in GC tissues were relatively low. Furthermore, a significant negative association was seen between HOOK3 expression and the prognosis of patients with GC. The suppression of HOOK3 resulted in a notable increase in the proliferation, migration, invasion, and survival of GC cells. Conversely, the overexpression of HOOK3 had the opposite impact, reducing these cellular processes. Moreover, in vivo tests have shown evidence that the overexpression of HOOK3 significantly inhibited the formation of tumors and the spread of GC cells to the lungs. In a mechanistic manner, the analysis of RNA-seq data demonstrated that the knockdown of HOOK3 resulted in a notable increase in the expression of vascular endothelial growth factor A (VEGFA) in GC cells. Furthermore, the upregulation of VEGFA counteracted the impacts of HOOK3 upregulation on the proliferation, migration, invasion, and survival of GC cells. Furthermore, it was revealed that specificity protein 1 (SP1) exhibited the ability to bind to the promoter region of VEGFA. Moreover, the overexpression of SP1 successfully counteracted the inhibitory impact of HOOK3 overexpression on the expression of VEGFA in GC cells. In summary, the results of our study indicate that HOOK3 has a role in inhibiting the growth, migration, invasion, and survival of GC cells by modulating the SP1/VEGFA pathway. These findings contribute significant knowledge to our understanding of the underlying mechanisms involved in the development of GC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3