ERK MAPK signaling pathway inhibition as a potential target to prevent autophagy alterations in Spinal Muscular Atrophy motoneurons

Author:

Sansa Alba,Miralles Maria P.,Beltran Maria,Celma-Nos Ferran,Calderó Jordi,Garcera Ana,Soler Rosa M.ORCID

Abstract

AbstractSpinal Muscular Atrophy (SMA) is a severe genetic neuromuscular disorder that occurs in childhood and is caused by misexpression of the survival motor neuron (SMN) protein. SMN reduction induces spinal cord motoneuron (MN) degeneration, which leads to progressive muscular atrophy and weakness. The link between SMN deficiency and the molecular mechanisms altered in SMA cells remains unclear. Autophagy, deregulation of intracellular survival pathways and ERK hyperphosphorylation may contribute to SMN-reduced MNs collapse, offering a useful strategy to develop new therapies to prevent neurodegeneration in SMA. Using SMA MN in vitro models, the effect of pharmacological inhibition of PI3K/Akt and ERK MAPK pathways on SMN and autophagy markers modulation was studied by western blot analysis and RT-qPCR. Experiments involved primary cultures of mouse SMA spinal cord MNs and differentiated SMA human MNs derived from induced pluripotent stem cells (iPSCs). Inhibition of the PI3K/Akt and the ERK MAPK pathways reduced SMN protein and mRNA levels. Importantly, mTOR phosphorylation, p62, and LC3-II autophagy markers protein level were decreased after ERK MAPK pharmacological inhibition. Furthermore, the intracellular calcium chelator BAPTA prevented ERK hyperphosphorylation in SMA cells. Our results propose a link between intracellular calcium, signaling pathways, and autophagy in SMA MNs, suggesting that ERK hyperphosphorylation may contribute to autophagy deregulation in SMN-reduced MNs.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3