LncRNA 1700020I14Rik promotes AKR1B10 expression and activates Erk pathway to induce hepatocyte damage in alcoholic hepatitis

Author:

Wu Yue,Qi Yabin,Bai Yangqiu,Zhang Haihui,Zhu Wenliang,Zhou Shengli,Zhang YanruiORCID

Abstract

AbstractAlcoholic hepatitis (AH), a kind of alcoholic liver disease, shows poor prognosis. Long noncoding RNAs (lncRNAs) exert critical role in liver diseases. Here, we intended to investigate the possible molecular mechanism that 1700020I14Rik-based regulation of microRNA (miR)-137/Aldo-keto reductase family 1 member B10 (AKR1B10) affecting the inflammatory response and hepatocyte damage in AH. AH-related genes and the down-stream regulatory pathway were screnned by bioinformatics. Mouse normal hepatocyte cell line AML12 was selected to construct an ethanol-induced hepatocyte injury model for in vitro mechanistic validation, while we also established an AH mouse model using the ethanol with gradually increased concentration of 2–4% (v/v) for in vivo study. Specific role of 1700020I14Rik/miR-137/AKR1B10 in AML12 cell viability, proliferation and apoptotic capacity as well as inflammation and liver damage in mice were analyzed following ectopic and depletion approaches. We found elevated AKR1B10 and 1700020I14Rik but reduced miR-137 in AH. 1700020I14Rik was able to elevated miR-137-mediated AKR1B10. In vitro cell experiments and in vivo animal experiments validated that 1700020I14Rik reduced ethanol-induced hepatocyte damage and inflammation in AH mice through regulation of miR-137–mediated AKR1B10/Erk axis. The current study underlied that 1700020I14Rik could activate AKR1B10/Erk signaling through inhibition of miR-137, thereby promoting the hepatocyte damage in AH mice.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3