The spatiotemporal dynamics of spatially variable genes in developing mouse brain revealed by a novel computational scheme

Author:

Hong Yingzhou,Song Kai,Zhang Zongbo,Deng Yuxia,Zhang Xue,Zhao Jinqian,Jiang Jun,Zhang Qing,Guo ChunmingORCID,Peng ChengORCID

Abstract

AbstractTo understand how brain regions form and work, it is important to explore the spatially variable genes (SVGs) enriched in specific brain regions during development. Spatial transcriptomics techniques provide opportunity to select SVGs in the high-throughput way. However, previous methods neglected the ranking order and combinatorial effect of SVGs, making them difficult to automatically select the high-priority SVGs from spatial transcriptomics data. Here, we proposed a novel computational pipeline, called SVGbit, to rank the individual and combinatorial SVGs for marker selection in various brain regions, which was tested in different kinds of public datasets for both human and mouse brains. We then generated the spatial transcriptomics and immunohistochemistry data from mouse brain at critical embryonic and neonatal stages. The results show that our ranking and clustering scheme captures the key SVGs which coincide with known anatomic regions in the developing mouse brain. More importantly, SVGbit can facilitate the identification of multiple gene combination sets in different brain regions. We identified three dynamical sub-regions which can be segregated by the staining of Sox2 and Calb2 in thalamus, and we also found that Nr4a2 expression gradually segregates the neocortex and hippocampus during the development. In summary, our work not only reveals the spatiotemporal dynamics of individual and combinatorial SVGs in developing mouse brain, but also provides a novel computational pipeline to facilitate the selection of marker genes from spatial transcriptomics data.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3