IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia

Author:

Jin Rui,Xu Junjie,Gao Qianqian,Mao Xiaonan,Yin Jiao,Lu Keyu,Guo Yan,Zhang MingshunORCID,Cheng Rui

Abstract

AbstractBronchopulmonary dysplasia (BPD) is the leading cause of chronic lung disease in preterm neonates. Extracellular matrix (ECM) abnormalities reshape lung development, contributing to BPD progression. In the present study, we first discovered that the ECM component fibronectin was reduced in the pulmonary tissues of model mice with BPD induced by lipopolysaccharide (LPS) and hyper-oxygen. Meanwhile, interleukin-33 (IL-33) and other inflammatory cytokines were elevated in BPD lung tissues. LPS stimulated the production of IL-33 in alveolar epithelial cells via myeloid differentiation factor 88 (MyD88), protein 38 (p38), and nuclear factor-kappa B (NF-κB) protein 65 (p65). Following the knockout of either IL-33 or its receptor suppression of tumorigenicity 2 (ST2) in mice, BPD disease severity was improved, accompanied by elevated fibronectin. ST2 neutralization antibody also relieved BPD progression and restored the expression of fibronectin. IL-33 induced the formation of neutrophil extracellular traps (NETs), which degraded fibronectin in alveolar epithelial cells. Moreover, DNase-mediated degradation of NETs was protective against BPD. Finally, a fibronectin inhibitor directly decreased fibronectin and caused BPD-like disease in the mouse model. Our findings may shed light on the roles of IL-33-induced NETs and reduced fibronectin in the pathogenesis of BPD.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3