Elevated histone demethylase KDM5C increases recurrent miscarriage risk by preventing trophoblast proliferation and invasion

Author:

Xiao MinORCID,Zheng Yan,Wang Meng-XiORCID,Sun Yi-Hua,Chen Juan,Zhu Kang-Yong,Zhang Fan,Tang Yun-Hui,Yang Fan,Zhou Ting,Zhang Yue-Ping,Lei Cai-Xia,Sun Xiao-XiORCID,Yu Shan-HeORCID,Tian Fu-JuORCID

Abstract

AbstractKDM5C is a histone H3K4-specific demethylase, which has been shown to play a key role in biological disease and development. However, the role of KDM5C in trophoblasts at early pregnancy is currently unknown. Here, we showed that KDM5C was upregulated in placental trophoblasts from recurrent miscarriage (RM) patients compared with healthy controls (HCs). Trophoblast proliferation and invasion was inhibited by KDM5C overexpression and was promoted by KDM5C knockdown. Transcriptome sequencing revealed that elevated KDM5C exerted anti-proliferation and anti-invasion effects by repressing the expression of essential regulatory genes. The combination analysis of RNA-seq, ChIP-seq and CUT&Tag assay showed that KDM5C overexpression leads to the reduction of H3K4me3 on the promoters and the corresponding downregulation of expression of several regulatory genes in trophoblasts. Among these genes, TGFβ2 and RAGE are essential for the proliferation and invasion of trophoblasts. Importantly, overexpression of KDM5C by a systemically delivered KDM5C adenovirus vector (Ad-KDM5C) promoted embryo resorption rate in mouse. Our results support that KDM5C is an important regulator of the trophoblast function during early pregnancy, and suggesting that KDM5C activity could be responsible for epigenetic alterations seen RM disease.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3