Abstract
AbstractBacterial infections pose a severe threat to human health due to the exacerbation of antibiotic resistance and intracellular bacterial infections. Research suggests that oligo(p-phenylene vinylene) (OPV), commonly employed in the manufacture of organic solar batteries, can help address this issue. This study demonstrates the ability of OPV to target and sterilize intracellular Porphyromonas gingivalis and methicillin-resistant Staphylococcus aureus (MRSA) photodynamically. Most notably, OPV specifically targets bacteria without affecting healthy cells under dark conditions. Its chemical composition includes a conjugated backbone and ionic imidazole side chains, which allow OPV to bind to cell membranes. Furthermore, dental blue light curing lamps may excite OPV. Compared with antibiotics and traditional photosensitizers, OPV proves to be a potentially superior solution to eradicate intracellular microbial infections, both in fundamental research and clinical applications.
Funder
National Natural Science Foundation of China
Peking University
Fundamental Research Funds for the Central Universities-Peking University Medicine Fund of Fostering Young Scholars’ Scientific & Technological Innovation
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation