Multifunctional electrochromic energy storage devices by chemical cross-linking: impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films

Author:

Koo Bon-Ryul,Jo Myeong-Hun,Kim Kue-Ho,Ahn Hyo-JinORCID

Abstract

AbstractWith the advent of multifunctional devices with electrochromic (EC) behavior and electrochemical energy storage, complementary design of film structures using inorganic–organic materials has shown great potential for developing EC energy storage devices. Herein, hybrid films consisting of WO3·H2O nanoparticle (WHNP)-embedded chitosan thin films on amorphous WO3 (a-WO3) films were designed. By exploiting the hybrid effect of chitosan and WHNPs to generate unique chemical cross-linking between them, the designed films exhibited attractive EC behaviors compared to bare a-WO3 films. These included fast switching speeds (4.0 s for coloration and 0.8 s for bleaching) due to enhanced electrical conductivity and Li-ion diffusivity, high coloration efficiency (62.4 cm2/C) as a result of increased electrochemical activity, and superb long-cycling retention (91.5%) after 1000 cycles due to improved electrochemical stability. In addition, hybrid films exhibited a noticeable energy storage performance with a high specific capacitance (154.0 F/g at a current density of 2 A/g) and a stable rate capability as a result of improved electrochemical activity and fast electrical conductivity, respectively. This resulted in brighter illumination intensity for the 1.5-V white-light-emitting diode due to improved energy density compared to a bare a-WO3 film. Therefore, the results suggest a new design strategy for materials to realize the coincident application of multifunctional devices with EC energy storage performance.

Funder

National Research Foundation of Korea

National Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3