Molecular mechanisms underpinning favourable physiological adaptations to exercise prehabilitation for urological cancer surgery

Author:

Blackwell James E. M.,Gharahdaghi Nima,Deane Colleen S.,Brook Matthew S.,Williams John P.,Lund Jonathan N.ORCID,Atherton Philip J.,Smith KenORCID,Wilkinson Daniel J.,Phillips Bethan E.ORCID

Abstract

Abstract Background Surgery for urological cancers is associated with high complication rates and survivors commonly experience fatigue, reduced physical ability and quality of life. High-intensity interval training (HIIT) as surgical prehabilitation has been proven effective for improving the cardiorespiratory fitness (CRF) of urological cancer patients, however the mechanistic basis of this favourable adaptation is undefined. Thus, we aimed to assess the mechanisms of physiological responses to HIIT as surgical prehabilitation for urological cancer. Methods Nineteen male patients scheduled for major urological surgery were randomised to complete 4-weeks HIIT prehabilitation (71.6 ± 0.75 years, BMI: 27.7 ± 0.9 kg·m2) or a no-intervention control (71.8 ± 1.1 years, BMI: 26.9 ± 1.3 kg·m2). Before and after the intervention period, patients underwent m. vastus lateralis biopsies to quantify the impact of HIIT on mitochondrial oxidative phosphorylation (OXPHOS) capacity, cumulative myofibrillar muscle protein synthesis (MPS) and anabolic, catabolic and insulin-related signalling. Results OXPHOS capacity increased with HIIT, with increased expression of electron transport chain protein complexes (C)-II (p = 0.010) and III (p = 0.045); and a significant correlation between changes in C-I (r = 0.80, p = 0.003), C-IV (r = 0.75, p = 0.008) and C-V (r = 0.61, p = 0.046) and changes in CRF. Neither MPS (1.81 ± 0.12 to 2.04 ± 0.14%·day−1, p = 0.39) nor anabolic or catabolic proteins were upregulated by HIIT (p > 0.05). There was, however, an increase in phosphorylation of AS160Thr642 (p = 0.046) post-HIIT. Conclusions A HIIT surgical prehabilitation regime, which improved the CRF of urological cancer patients, enhanced capacity for skeletal muscle OXPHOS; offering potential mechanistic explanation for this favourable adaptation. HIIT did not stimulate MPS, synonymous with the observed lack of hypertrophy. Larger trials pairing patient-centred and clinical endpoints with mechanistic investigations are required to determine the broader impacts of HIIT prehabilitation in this cohort, and to inform on future optimisation (i.e., to increase muscle mass).

Funder

RCUK | Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Urology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3