Intraoperative technologies to assess margin status during radical prostatectomy – a narrative review

Author:

Windisch O.ORCID,Diana M.,Tilki D.ORCID,Marra G.,Martini A.ORCID,Valerio M.

Abstract

AbstractPositive surgical margin (PSM) is a frequent concern for surgeons performing radical prostatectomy for prostate cancer (PCa). PSM are recognized as risk factors for earlier biochemical recurrence and expose patients to adjuvant or salvage treatments such as external radiotherapy and hormonotherapy. Several strategies have been established to reduce PSM rate, while still allowing safe nerve-sparing surgery. Precise preoperative staging by multiparametric magnetic resonance imaging (mpMRI) and fusion biopsy is recommended to identify suspicious areas of extracapsular extension (ECE) that warrant special attention during dissection. However, even with optimal imaging, ECE can be missed, some cancers are not well defined or visible, and capsular incision during surgery remains an issue. Hence, intraoperative frozen section techniques, such as the neurovascular structure-adjacent frozen section examination (NeuroSAFE) have been developed and lately widely disseminated. The NeuroSAFE technique reduces PSM rate while allowing higher rate of nerve-sparing surgery. However, its use is limited to high volume or expert center because of its high barrier-to-entry in terms of logistics, human resources and expertise, as well as cost. Also, NeuroSAFE is a time-consuming process, even in expert hands. To address these issues, several technologies have been developed for an ex vivo and in vivo use. Ex vivo technology such as fluorescent confocal microscopy and intraoperative PET-CT require the extraction of the specimen for preparation, and digital images acquisition. In vivo technology, such as augmented reality based on mpMRI images and PSMA-fluorescent guided surgery have the advantage to provide an intracorporeal analysis of the completeness of the resection. The current manuscript provides a narrative review of established techniques, and details several new and promising techniques for intraoperative PSM assessment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3