Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells
Author:
Publisher
Springer Science and Business Media LLC
Subject
Process Chemistry and Technology,Biochemistry,Bioengineering,Catalysis
Link
http://www.nature.com/articles/s41929-020-00546-1.pdf
Reference69 articles.
1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).
2. Wang, X. X., Swihart, M. T. & Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019).
3. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).
4. Stephens, I. E. L., Rossmeisl, J. & Chorkendorff, I. Toward sustainable fuel cells. Science 354, 1378–1379 (2016).
5. Ott, S. et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020).
Cited by 529 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Three-dimensional porous structured cobalt- and nitrogen-doped carbon nanotube electrocatalyst derived from cobalt-based zeolitic imidazolate framework nanoleaves for high performance zinc-air battery;Journal of Colloid and Interface Science;2024-12
2. Graphitized carbon-anchored FeSe nanoparticles for stable and efficient bifunctional electrocatalyst in rechargeable zinc-air batteries;Journal of Power Sources;2024-11
3. Exploring the catalytic characteristics of binuclear bimetallic FeM sites (M = Co, Ni, Pt) on nitrogen-doped graphene through density functional theory and ab initio molecular dynamics;Molecular Catalysis;2024-10
4. In-situ construction of ionic liquid salt-derived graphene-like dual-heteroatoms doping engineering as efficient metal-free electrocatalyst for oxygen reduction reaction;Journal of Alloys and Compounds;2024-10
5. Strong Electronic Metal–Support Interactions Enable the Increased Spin State of Co–N4 Active Sites and Performance for Acidic Oxygen Reduction Reaction;ACS Nano;2024-09-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3