AI-guided pipeline for protein–protein interaction drug discovery identifies a SARS-CoV-2 inhibitor
-
Published:2024-03-11
Issue:4
Volume:20
Page:428-457
-
ISSN:1744-4292
-
Container-title:Molecular Systems Biology
-
language:en
-
Short-container-title:Mol Syst Biol
Author:
Trepte PhilippORCID, Secker ChristopherORCID, Olivet JulienORCID, Blavier JeremyORCID, Kostova Simona, Maseko Sibusiso BORCID, Minia Igor, Silva Ramos EduardoORCID, Cassonnet Patricia, Golusik Sabrina, Zenkner Martina, Beetz Stephanie, Liebich Mara J, Scharek Nadine, Schütz AnjaORCID, Sperling MarcelORCID, Lisurek MichaelORCID, Wang Yang, Spirohn Kerstin, Hao Tong, Calderwood Michael AORCID, Hill David EORCID, Landthaler MarkusORCID, Choi Soon GangORCID, Twizere Jean-ClaudeORCID, Vidal MarcORCID, Wanker Erich EORCID
Abstract
AbstractProtein–protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.
Funder
Bundesministerium für Bildung und Forschung Helmholtz Association Helmholtz-Israel Initiative on Personalized Medicine CHDI Foundation Deutschen Konsortium für Translationale Krebsforschung Deutsche Forschungsgemeinschaft Claudia Adams Barr Award Fonds De La Recherche Scientifique - FNRS Wallonia-Brussels International (WBI)-World Excellence Fellowship National Institute of Health LabEx IBEID Deutsche Krebshilfe
Publisher
Springer Science and Business Media LLC
Reference98 articles.
1. Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, Mahfouz A (2019) A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol 20:194 2. Ahdritz G, Bouatta N, Floristean C, Kadyan S, Xia Q, Gerecke W, O’Donnell TJ, Berenberg D, Fisk I, Zanichelli N et al (2022) OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.11.20.517210v1 3. Alhossary A, Handoko SD, Mu Y, Kwoh C-K (2015) Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 31:2214–2216 4. Araujo MEG de, Naschberger A, Fürnrohr BG, Stasyk T, Dunzendorfer-Matt T, Lechner S, Welti S, Kremser L, Shivalingaiah G, Offterdinger M et al (2017) Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 358:377–381 5. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557):871–876.eabj8754
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|