Advance in additive manufacturing of 2D materials at the atomic and close-to-atomic scale

Author:

Chen Yixin,Fang FengzhouORCID,Zhang NanORCID

Abstract

AbstractAtomic and close-to-atomic scale manufacturing (ACSM) has emerged as promising technologies in the manufacturing paradigm. Among various materials, 2D materials have garnered significant attention for ACSM due to their atomic-scale characteristics and physical properties. While chemical vapor deposition (CVD) can be employed to produce high-quality 2D materials, achieving patterning often relies on photolithography techniques, which limit scalability and introduce impurities. To address these challenges, this article serves as a review by focusing on exploring atomic-scale additive manufacturing methods for 2D materials. Several potential techniques are reviewed, including site-selective CVD, area-selective atomic layer deposition, electrodeposition, laser-assisted synthesis, print methods, and atomic layer-aligned stacking. The applications of atomic-scale additive manufacturing in various fields, such as electronics, biosensing, and nanoelectromechanical systems, are discussed. Finally, the future prospects of atomic-scale additive manufacturing for 2D materials based on existing research are delved into.

Funder

Science Foundation Ireland

Enterprise Ireland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3