MoS2 decorated carbon fiber yarn hybrids for the development of freestanding flexible supercapacitors

Author:

Carvalho José Tiago,Correia Afonso,Cordeiro Neusmar J. A.,Coelho JoãoORCID,Lourenço Sidney A.,Fortunato Elvira,Martins Rodrigo,Pereira LuísORCID

Abstract

AbstractAcademic and industrial efforts have focused on developing energy storage devices for wearable and portable electronics using low-cost, scalable, and sustainable materials and approaches. In this work, commercially available stretch-broken carbon fiber yarns (SBCFYs) were hybridized with mixed phases of 1 T and 2H MoS2 nanosheets via conventional and microwave-assisted heating (CAH, MAH) without the use of binders to fabricate symmetric freestanding 1D fiber-shaped supercapacitors (FSCs). Electrochemical characterization performed in a three-electrode configuration showed promising results with specific capacitance values of 184.41 and 180.02 F·g−1, at 1 mV·s−1 for CAH and MAH, respectively. Furthermore, after performing 3000 CV cycles at 100 mV·s−1, the capacitance retention was 79.5% and 95.7%, respectively. Using these results as a reference, symmetric 1D FSCs were fabricated by pairing hybridized SBCFYs with MoS2 by MAH. The devices exhibited specific capacitances of approximately 58.60 ± 3.06 F·g−1 at 1 mV·s−1 and 54.81 ± 7.34 F·g−1 at 0.2 A·g−1 with the highest power density achieved being 15.17 W·g−1 and energy density of 5.06×10–4 Wh·g−1. In addition, five 1D FSCs were hand-stitched and connected in series onto a cotton fabric. These supercapacitors could power a temperature and humidity sensor for up to six minutes, demonstrating the practicality and versatility of the prepared 1D FSCs for powering future electronic systems.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3