High resolution NanoSIMS imaging of deuterium distributions in 316 stainless steel specimens after fatigue testing in high pressure deuterium environment

Author:

McMahon GregORCID,Miller Bryan D.,Burke M. Grace

Abstract

AbstractIt is irrefutable that the presence of hydrogen reduces the mechanical performance of many metals and alloys used for structural components. Several mechanisms of hydrogen-assisted cracking (HAC) of steels have been postulated. The direct evidence of the mechanisms by which hydrogen embrittles these materials has remained elusive. This is by virtue of our difficulty to directly observe the hydrogen distribution at spatial resolutions less than 100 nm and analysis volumes greater than 1 × 109atoms at microstructural features such as grain boundaries, dislocations, twins, stacking faults and sub-micron inclusions that are all potential hydrogen trapping sites postulated to be responsible for the degradation of mechanical performance. Here, we report on an experimental methodology combining an elaborate fatigue testing protocol in an enriched gaseous deuterium environment with NanoSIMS (secondary ion mass spectrometry) imaging for detection of deuterium at spatial resolutions as low as 100 nm and accompanying TEM analysis. Type 316 stainless steel compact tension specimens were precharged in deuterium followed by fatigue testing at high stress ratio (0.7), low delta K (~11 MPa √m), and a frequency of 1 cycle per minute using a sawtooth waveform with a rise time of 30 s in high pressure (68.9 MPa) gaseous deuterium (99.999% purity) environment at room temperature. High resolution NanoSIMS imaging was then used to measure the deuterium distribution at the tip of and in the wake of secondary and tertiary fatigue cracks as well as at MnS inclusions. The use of deuterium eliminates the difficulties of interpreting hydrogen measurements by SIMS relating to the ubiquitous presence of hydrogen in all high vacuum systems and guarantees that deuterium measured by the NanoSIMS must be attributed to the fatigue testing protocol. This methodology has allowed us to directly observe the distribution of hydrogen in dislocation tangles ahead and in the wake of fatigue crack tips and at the interface of MnS inclusions. The protocol provides an avenue by which the path and speed with which hydrogen proceeds along its embrittling course of action may be directly followed through modifications of the fatigue testing parameters and/or alloy type and allows a means to validate at least qualitatively recently published models of enhanced hydrogen transport by dislocations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3