Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates

Author:

Alkhalifah Tariq,Fomel Sergey

Abstract

Spherical coordinates are a natural orthogonal system for describing wavefronts emanating from a point source. A regular grid distribution in the Cartesian‐coordinate system tends to undersample the wavefront description near the source (at the highest wavefront curvature) and oversample it away from the source. Spherical coordinates, in general, provide a more balanced grid distribution for characterizing point‐source wavefronts. Our numerical implementation confirms that the recently introduced fast marching algorithm is both a highly efficient and an unconditionally stable eikonal solver. However, its first‐order approximation of traveltime derivatives can induce relatively large traveltime errors for waves propagating in a diagonal direction with respect to the coordinate system. Examples, including the IFP Marmousi and the SEG/EAGE 3D salt‐dome models, show that a spherical‐coordinate implementation of the method results in far fewer errors in traveltime calculation than the conventional Cartesian‐coordinate implementation, and with practically no loss in computational advantages.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3