Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid‐inducible promoters by differential fluorescence induction

Author:

Valdivia Raphael H.,Falkow Stanley

Abstract

The ability of Salmonella typhimurium to survive and replicate within murine macrophages is dependent on a low phagosomal pH. This requirement for an acidic vacuole suggests that low pH is an important environmental stimulus for the transcription of genes necessary for intracellular survival. To study the behaviour of acid‐inducible genes in response to the phagosomal environment, we have applied a novel enrichment strategy, termed differential fluorescence induction (DFI), to screen an S. typhimurium library for promoters that are upregulated at pH 4.5. DFI utilizes a fluorescence‐enhanced green fluorescent protein (GFP) and a fluorescence‐activated cell sorter (FACS) to perform genetic selection. In the presence of an inducing stimulus, such as low pH, a FACS is used to sort highly fluorescent bacterial clones bearing random promoters fused to the mutant GFP protein (GFPmut). This population is then amplified at neutral pH and the least fluorescent population is sorted. Sequential sorts for fluorescent and non‐fluorescent bacteria in the presence or absence of inducing conditions rapidly enriches for promoter fusions that are regulated by the inducing stimulus. We have identified eight acid‐inducible promoters and quantified their expression in response to pH 4.5 and to the phagosome milieu. These acid‐inducible promoters exhibited extensive homology to promoter regions of genes encoding for cell‐surface‐maintenance enzymes, stress proteins, and generalized efflux pumps. Only a subset of these promoters was induced in macrophages with kinetics and levels of expression that do not necessarily correlate with in vitro pH‐shock induction. This suggests that while low pH is a relevant inducer of intracellular gene expression, additional stimuli in the macrophage can modulate the expression of acid‐inducible genes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3