Identification and Characterization of a Bacteriophage with Lytic Activity against Multidrug Resistant E. coli

Author:

Abdulhussein Abdulrahman A.,Abdulsattar Ban OdayORCID

Abstract

Escherichia coli strains are increasingly becoming resistant to antibiotics and emerging globally. Bacteriophage is re-explored for the development of an alternative and safe agent to control a bacterial infection, especially with multi-drug resistant (MDR) bacteria. Here, we reported the identification of AAA1 phage from a sewage site near Baghdad’s Medical City. Morphological analysis using Transmission Electron Microscopy (TEM) suggested that the AAA1 phage had an icosahedral head of width ~ 70 nm and a non-contractile tail of ~ 400 nm belonging to the Siphoviridae family from the Caudovirales order. The plaque observation showed that plaques size and shape differ after prolonged incubation. The optimal multiplicity of infection was 0.1. The one-step growth curve was assessed and the result showed that AAA1 latent period was 10 minutes; burst size was 93PFU/cell and the burst period of 30 minutes. Based on characteristics, AAA1 phage is a potential candidate to control MDR E. coli infection.

Publisher

Al-Mustansiriyah Journal of Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3