Predicting Survival in Patients With Brain Metastases Treated With Radiosurgery Using Artificial Neural Networks

Author:

Oermann Eric K.12,Kress Marie-Adele S.2,Collins Brian T.2,Collins Sean P.2,Morris David3,Ahalt Stanley C.45,Ewend Matthew G.1

Affiliation:

1. Department of Neurosurgery and the Lineberger Comprehensive Cancer Center

2. Department of Radiation Medicine, Georgetown University Hospital, Washington, DC

3. Department of Radiation Oncology, and

4. Department of Computer Science, University of North Carolina School of Medicine, Chapel Hill, North Carolina

5. Renaissance Computing Institute, Chapel Hill, North Carolina

Abstract

Abstract BACKGROUND: Artificial neural networks (ANNs) excel at analyzing challenging data sets and can be exceptional tools for decision support in clinical environments. The present study pilots the use of ANNs for determining prognosis in neuro-oncology patients. OBJECTIVE: To determine whether ANNs perform better at predicting 1-year survival in a group of patients with brain metastasis compared with traditional predictive tools. METHODS: ANNs were trained on a multi-institutional data set of radiosurgery patients to predict 1-year survival on the basis of several input factors. A single ANN, an ensemble of 5 ANNs, and logistic regression analyses were compared for efficacy. Sensitivity analysis was used to identify important variables in the ANN model. RESULTS: A total of 196 patients were divided up into training, testing, and validation data sets consisting of 98, 49, and 49 patients, respectively. Patients surviving at 1 year tended to be female (P = .001) and of good performance status (P = .01) and to have favorable primary tumor histology (P = .001). The pooled voting of 5 ANNs performed significantly better than the multivariate logistic regression model (P = .02), with areas under the curve of 84% and 75%, respectively. The ensemble also significantly outperformed 2 commonly used prognostic indexes. Primary tumor subtype and performance status were identified on sensitivity analysis to be the most important variables for the ANN. CONCLUSION: ANNs outperform traditional statistical tools and scoring indexes for predicting individual patient prognosis. Their facile implementation, robustness in the presence of missing data, and ability to continuously learn make them excellent choices for use in complicated clinical environments.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3