C6 Glioma-Astrocytoma Cell and Fetal Astrocyte Migration into Artificial Basement Membrane: A Permissive Substrate for Neural Tumors but Not Fetal Astrocytes

Author:

Bernstein Jerald J.123,Laws Edward R.1,Levine Kirstiaan V.1,Wood Lawrence R.1,Tadvalkar Gauri1,Goldberg William J.23

Affiliation:

1. Departments of Neurological Surgery, The George Washington University School of Medicine

2. Physiology. The George Washington University School of Medicine, Washington, District of Columbia

3. Laboratory of Central Nervous System Injury and Regeneration, Veterans Affairs Medical Center. Washington, District of Columbia

Abstract

Abstract Cortically homografted C6 glioma-astrocytoma cells both invade the rat host brain as a mass and migrate as individual cells. In contrast, fetal astrocytes derived from homografted whole pieces of fetal cortex migrate only as individual cells throughout the brain of the rat but are not capable of invasion. Our experiments explored the migratory capacity (over 7 days) of cultured purified fetal astrocytes and C6 cells after seeding 106 cells on a hydrated artificial basement membrane wafer (Matrigel). The artificial basement membrane wafer was not a suitable substrate for the growth of cultured fetal astrocytes. In contrast, C6 cells migrated as individual cells from the surface of the wafer into the substrate. Individual C6 cells migrated 1.8 mm in the first 4 days and then ceased migration. The C6 cells were observed at the base of a digestion tube that extended from and was open to the surface of the wafer. At 3 days, micropockets were observed to form around each C6 cell at the base of each tube. By 7 days, the majority of pockets observed were large and contained several C6 cells. These multiple cell groups appeared to be progenitors of tumor masses. These data indicate that C6 glioma-astrocytoma cells, which in vivo appear to be a model for glioblastoma multiforme, primarily migrate as individual cells through artificial basement membrane and secondarily form tumor masses. Progenitor tumor masses form by coalescence of individual C6 cell micropockets or the division of a single cell in an individual micropocket.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3