Impairment of Cerebral Autoregulation during the Development of Chronic Cerebral Vasospasm after Subarachnoid Hemorrhage in Primates

Author:

Takeuchi Hiroaki1,Handa Yuji1,Kobayashi Hidenori1,Kawano Ilirokazu1,Hayashi Minoru1

Affiliation:

1. Department of Neurosurgery, Fukui Medical School, Fukui, Japan

Abstract

Abstract We studied the impairment of autoregulation of cerebral blood flow (CBF) and its effect on the electrical activity of the brain during the development of chronic cerebral vasospasm after subarachnoid hemorrhage, using a vasospasm model in primates. Fourteen animals were divided into two groups: a clot group (8) and a sham-operated group (6). To induce subarachnoid hemorrhage, all the animals underwent craniectomy, and in the clot group, the autologous blood clot was located around the arteries dissected free from the arachnoid membrane. Cerebral angiography was performed before subarachnoid hemorrhage and 7 days after (Day 7). On Day 7, regional CBF in the parietal lobe—measured by the hydrogen clearance method—and central conduction time were studied during either graded hypertension or hypotension. In the clot group, the mean vessel caliber of the cerebral arteries on the right side (clot side) of the circle of Willis showed significant (P<0.01) reduction (more than 40%) as compared with the values on the contralateral, non-clot side. The values for the bilateral parietal CBF in the sham-operated group and the left parietal CBF in the clot group were fairly constant when the mean arterial blood pressure (MABP) was in the range of 60 to 160 mm Hg. In the clot group, right parietal CBF was significantly (P < 0.05) smaller than that on the left side at an MABP level of 40 to 100 mm Hg, and increased at an MABP level of 180 mm Hg. The right parietal CBF increased as the arterial blood pressure increased, showing impairment of autoregulation. The central conduction time on the right side in the clot group was significantly (P<0.05) prolonged at an MABP of 40 mm Hg. It is suggested that impairment of autoregulation is strongly affected by the development of cerebral vasospasm and that, in this state, a decrease in cerebral perfusion pressure easily depresses the electrical function of the brain.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3