Training Performance Assessment for Intracranial Aneurysm Clipping Surgery Using a Patient-Specific Mixed-Reality Simulator: A Learning Curve Study

Author:

Cuba Miguel1ORCID,Vanluchene Hanne1,Murek Michael2ORCID,Goldberg Johannes2ORCID,Müller Mandy D.2ORCID,Montalbetti Matteo2ORCID,Janosovits Katharina2,Rhomberg Thomas2ORCID,Zhang David2,Raabe Andreas2,Joseph Fredrick J.1ORCID,Bervini David2ORCID

Affiliation:

1. Image Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland;

2. Department of Neurosurgery, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland

Abstract

BACKGROUND AND OBJECTIVES: The value of simulation-based training in medicine and surgery has been widely demonstrated. This study investigates the introduction and use of a new mixed-reality neurosurgical simulator in aneurysm clipping surgery, focusing on the learning curve and performance improvement. METHODS: Five true-scale craniotomy head models replicating patient-specific neuroanatomy, along with a mixed-reality simulator, a neurosurgical microscope, and a set of microsurgical instruments and clips, were used in the operation theater to simulate aneurysm microsurgery. Six neurosurgical residents participated in five video-recorded simulation sessions over 4 months. Complementary learning modalities were implemented between sessions. Thereafter, three blinded analysts reported on residents' use of the microscope, quality of manipulation, aneurysm occlusion, clipping techniques, and aneurysm rupture. Data were also captured regarding training time and clipping attempts. RESULTS: Over the course of training, clipping time and number of clipping attempts decreased significantly (P = .018, P = .032) and the microscopic skills improved (P = .027). Quality of manipulation and aneurysm occlusion scoring improved initially although the trend was interrupted because the spacing between sessions increased. Significant differences in clipping time and attempts were observed between the most and least challenging patient models (P = .005, P = .0125). The least challenging models presented higher rates of occlusion based on indocyanine green angiography evaluation from the simulator. CONCLUSION: The intracranial aneurysm clipping learning curve can be improved by implementing a new mixed-reality simulator in dedicated training programs. The simulator and the models enable comprehensive training under the guidance of a mentor.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Schweizerische Herzstiftung

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3