Development and Validation of a Novel Human-Fixed Cadaveric Model Reproducing Cerebrospinal Fluid Circulation for Simulation of Endoscopic Endonasal Skull Base Surgery

Author:

Gosselin Laura-Elisabeth12ORCID,Morin Nicolas23,Gariépy Charles3,Chamberland Mathieu1,Beaulieu Olivier1,Nadeau Sylvie4,Champagne Pierre-Olivier25

Affiliation:

1. Department of Otolaryngology – Head and Neck Surgery, Université Laval, Quebec, Québec, Canada;

2. Université Laval Neurosurgical Innovation Laboratory (ULNIL), Quebec, Québec, Canada;

3. Department of Neurosurgery, Université Laval, Quebec, Québec, Canada;

4. Department of Otolaryngology – Head and Neck Surgery, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, Québec, Canada;

5. Department of Neurosurgery, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, Québec, Canada

Abstract

BACKGROUND AND OBJECTIVES: Endoscopic endonasal surgery is a well-established surgical approach to the skull base. Surgeons need a reusable long-lasting tool to acquire the skills needed for skull base reconstruction. The aim of this study was to elaborate and validate a human formalin-fixed cadaveric model that reproduces a realistic cerebrospinal fluid (CSF) circulation and that adequately renders a CSF leak. METHODS: An external ventricular drain that connects with a peristaltic pump is placed in the subarachnoid space, which allows a water circulation that reproduces CSF circulation. Intracranial pressure is measured in real time. Endoscopic endonasal skull base approaches are performed, to create different skull base openings and CSF leaks. Participants were tasked with reconstruction of the defects using a standardized multilayered approach, with the goal of obtaining a watertight closure under normal intracranial pressure ranges. Compiled data included time of reconstruction, years of experience of participants, and success/failure to achieve a watertight reconstruction. A Likert questionnaire was also used. RESULTS: The cadaveric model reproduced CSF circulation in 4 types of dural defects: sellar, suprasellar, transcribriform, and transclival. Intracranial pressures were similar to physiological conditions and were reproducible. Each model was tested multiple times, over several months. Success rates concurred with training levels (r = .8282 and P = .0017). A strong inverse correlation was also found between years of experience and time of reconstruction (r = .4977 and P < .0001). Participants agreed that the model was realistic (median Likert score of 4), and they strongly agreed that it allowed for the improvement of their surgical skills (median Likert score of 5). CONCLUSION: This novel human-fixed cadaveric model for CSF circulation is efficient and adequately reproduces surgical conditions for skull base approaches. The model is unique, easy to reproduce, and reusable. It can be used as a tool for teaching and for research purposes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3