Robot-Assisted Minimally Invasive Asleep Single-Stage Deep Brain Stimulation Surgery: Operative Technique and Systematic Review

Author:

Fayed Islam1ORCID,Smit Rupert D.2,Vinjamuri Shreya2,Kang KiChang2,Sathe Anish2,Sharan Ashwini1,Wu Chengyuan1

Affiliation:

1. Department of Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA;

2. Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Abstract

BACKGROUND AND OBJECTIVES: Robotic assistance has garnered increased use in neurosurgery. Recently, this has expanded to include deep brain stimulation (DBS). Several studies have reported increased accuracy and improved efficiency with robotic assistance, but these are limited to individual robotic platforms with smaller sample sizes or are broader studies on robotics not specific to DBS. Our objectives are to report our technique for robot-assisted, minimally invasive, asleep, single-stage DBS surgery and to perform a meta-analysis comparing techniques from previous studies. METHODS: We performed a single-center retrospective review of DBS procedures using a floor-mounted robot with a frameless transient fiducial array registration. We compiled accuracy data (radial entry error, radial target error, and 3-dimensional target error) and efficiency data (operative time, setup time, and total procedure time). We then performed a meta-analysis of previous studies and compared these metrics. RESULTS: We analyzed 315 electrodes implanted in 160 patients. The mean radial target error was 0.9 ± 0.5 mm, mean target 3-dimensional error was 1.3 ± 0.7 mm, and mean radial entry error was 1.1 ± 0.8 mm. The mean procedure time (including pulse generator placement) was 182.4 ± 47.8 minutes, and the mean setup time was 132.9 ± 32.0 minutes. The overall complication rate was 8.8% (2.5% hemorrhagic/ischemic, 2.5% infectious, and 0.6% revision). Our meta-analysis showed increased accuracy with floor-mounted over skull-mounted robotic platforms and with fiducial-based registrations over optical registrations. CONCLUSION: Our technique for robot-assisted, minimally invasive, asleep, single-stage DBS surgery is safe, accurate, and efficient. Our data, combined with a meta-analysis of previous studies, demonstrate that robotic assistance can provide similar or increased accuracy and improved efficiency compared with traditional frame-based techniques. Our analysis also suggests that floor-mounted robots and fiducial-based registration methods may be more accurate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3