1. Inverse molecular design using machine learning: Generative models for matter engineering
2. Elton, D. C.; Boukouvalas, Z.; Fuge, M. D.; Chung, P. W. Deep Learning for Molecular Generation and Optimization—A Review of the State of the Art. 2019, arXiv:1903.04388. arXiv.org e-Printarchive. https://arxiv.org/abs/1903.04388.
3. Deep learning enables rapid identification of potent DDR1 kinase inhibitors
4. Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; Gulcehre, C.; Song, F.; Ballard, A.; Gilmer, J.; Dahl, G.; Vaswani, A.; Allen, K.; Nash, C.; Langston, V.; Dyer, C.; Heess, N.; Wierstra, D.; Kohli, P.; Botvinick, M.; Vinyals, O.; Li, Y.; Pascanu, R. Relational Inductive Biases, Deep Learning, and Graph Networks. 2018, arXiv:1806.01261. arXiv.org e-Printarchive. https://arxiv.org/abs/1806.01261.
5. Maron, H.; Fetaya, E.; Segol, N.; Lipman, Y. On the Universality of Invariant Networks. 2019, arXiv:1901.09342v4. arXiv.org e-Printarchive. https://arxiv.org/abs/1901.09342v4.