Comparative heat transfer analysis of 𝑨𝒍𝟐𝑶𝟑 and 𝑪𝒖 nanoparticles based in 𝑯𝟐𝑶 nanofluids flow inside a C-shaped partially heated rectangular cavity

Author:

Awais Muhammad,Soomro Feroz Ahmed,El-Sapa Shreen,Khokhar Rahim Bux,A. Almoneef Areej

Abstract

The aim of the current study is to investigate the heat transfer performance of 𝐴𝑙2𝑂3 and 𝐶𝑢 nanoparticles suspended based in 𝐻2𝑂 nanofluids inside a partially heated C-shaped enclosure. The governing equations for heat and flow transfer are solved using the Finite Element Method. Heat transmission is affected by the type and form of nanoparticles. To study the improved heat transfer performance, four different shapes of nanoparticles-spherical, cylindrical, column, and lamina-have been used. The investigation showed that among the considered shapes of nanoparticles, the lamina shape of nanoparticles performed best. Considering lamina nanoparticles, in comparison to the simple nanofluids 𝐴𝑙2𝑂3−𝐻2𝑂 and 𝐶𝑢−𝐻2𝑂 the hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂 provides the enhanced heat transfer rate. The heat transfer is governed by convection at a higher Rayleigh number. On the other hand, the heat transfer rate is decreasing by increasing the impact of the magnetic field. For the increased heat transfer rate, the best choice is lamina nanoparticles and hybrid nanofluid 𝐴𝑙2𝑂3−𝐶𝑢−𝐻2𝑂.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3