Anatomy and physiology of a nociceptive modulatory system

Author:

Abstract

Although efferent control of sensory transmission is a well-established concept, a specific network for nociceptive modulation has only recently been discovered. This network includes interconnected components at midbrain, medullary and spinal levels. At the midbrain level, electrical stimulation of the periaqueductal grey (p.a.g.) inhibits spinal neurons that respond to noxious stimuli as well as nociceptor-induced reflexes and escape behaviour in a variety of species. Midbrain stimulation also produces analgesia in patients with clinically significant pain. The rostral ventral medulla (r.v.m.) has similar behavioural and physiological effects and mediates midbrain antinociceptive actions at the level of the spinal cord. Endorphins are present at all levels of this nociceptive modulating network. Opiate microinjections at p.a.g., r.v.m. or spinal levels produce analgesia, presumably by mimicking the actions of the endorphins. The nociceptive modulatory system is diffusely organized, highly interconnected and appears to act as a unit whether activated by opiates or electrical stimulation. There are two classes of r.v.m. neurons the activity of which is correlated with the occurrence of reflexes induced by noxious stimulation. One class (the on-cell) accelerates, the other class (the off-cell) pauses just before tail flick. Both classes project to the spinal cord and are excited by electrical stimulation of the midbrain. However, when morphine is injected either systemically or into the p.a.g., the off-cell is excited and the on-cell stops firing. The off-cell is probably the r.v.m. output cell that inhibits nociceptive transmission at the level of the spinal cord. The function of the on-cell is not clear. The nociceptive modulatory system can be activated by a variety of stressful environmental factors, which are often, but not necessarily, noxious. The idea that the system acts as a simple negative feedback circuit is not consistent with its known properties.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference45 articles.

1. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. J. comp;Abols I. A.;Neurol.,1981

2. The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique

3. Antagonism of microstimulation-produced analgesia by intrathecal injection of methysergide and yohimbine;Barbaro N. M.;Soc. Neurosci. Abstr.,1983

4. Barbaro N. M. Heinricher M. M. & Fields H. L. 1984 Differential effect of morphine on three classes of medullary neurons. Pain suppl. 2 p. 221.

5. Basbaum A. I. & Fields H. L. 1978 Endogenous pain control mechanisms: review and hypothesis. Ann. Neurol. 4 45 1-462.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3