The aerodynamics of hovering insect flight. II. Morphological parameters

Author:

Abstract

Morphological parameters are presented for a variety of insects that have been filmed in free flight. The nature of the parameters is such that they can be divided into two distinct groups: gross parameters and shape parameters. The gross parameters provide a very crude, first-order description of the morphology of a flying animal: its mass, body length, wing length, wing area and wing mass. Another gross parameter of the wings is their virtual mass, or added mass, which is the mass of air accelerated and decelerated together with the wing at either end of the wingbeat. The wing motion during these accelerations is almost perpendicular to the wing surface, and the virtual mass is approximately given by the mass of air contained in an imaginary cylinderaround the wing with the chord as its diameter. The virtual mass ranges from 0.3 to 1.3 times the actual wing mass, indicating that the total mass accelerated by the flight muscles can be more than twice the wing mass itself. Over the limited size range of insects in this study, the interspecific variation of non-dimensional forms of the gross parameters is much greater than any systematic allometric variation, and no interspecific correlations can be found. The new shape parameters provide quite a surprise, however: intraspecific coefficients of variation are very low, often only 1 %, and interspecific allometric relations are extremely strong. Mechanical aspects offlight depend not only on the magnitude of gross morphological quantities, but also on their distributions. Non-dimensional radii are derived from the non-dimensional moments of the distributions; for example, the first radius of wing mass about the wing base gives the position of the centre of mass, and the second radius corresponds to the radius of gyration. The radii are called ‘shape parameters’ since they are functions only of the normalized shape of the distributions, and they provide a second-order description of the animal morphology. The various radii of wing area are strongly correlated, as are those of wing mass and of virtual mass: the higher radii for each quantity can all be expressed by allometric functions of the first radius. The overall shape of the distribution of a quantity can therefore be characterized by a single parameter, the position of the centroid of that quantity. The strong relations between the radii of wing area, mass and virtual mass hold for a diverse collection of insects, birds and bats. Thus flying animals adhere to ‘laws of shape’ regardless of biological differences. Aerodynamic and mechanical considerations are most likely to provide an understanding of these laws of shape, but an explanation has proved elusive so far. The detailed shape of a distribution can be reconstructed from the shape parameters by matching the moments of the observed distribution to those of a suitable analytical function. A Beta distribution is compared with the distribution of wing area, i.e. the shape of the wing, and a very good fit is found. With use of the laws of shape relating the higher radii to the first radius, the Beta distribution can be reduced to a function ofonly one parameter, thus providing a powerful tool for drawing a close approximation to the entire shape of a wing given only its centroid of area. Quite unexpectedly, the continuous spectrum of wing shapes can then be described in detail by a single parameter of shape.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 524 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3