Host coevolution alters the adaptive landscape of a virus

Author:

Burmeister Alita R.123ORCID,Lenski Richard E.123ORCID,Meyer Justin R.4ORCID

Affiliation:

1. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

2. Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA

3. BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA

4. Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA

Abstract

The origin of new and complex structures and functions is fundamental for shaping the diversity of life. Such key innovations are rare because they require multiple interacting changes. We sought to understand how the adaptive landscape led to an innovation whereby bacteriophage λ evolved the new ability to exploit a receptor, OmpF, on Escherichia coli cells. Previous work showed that this ability evolved repeatedly, despite requiring four mutations in one virus gene. Here, we examine how this innovation evolved by studying six intermediate genotypes of λ isolated during independent transitions to exploit OmpF and comparing them to their ancestor. All six intermediates showed large increases in their adsorption rates on the ancestral host. Improvements in adsorption were offset, in large part, by the evolution of host resistance, which occurred by reduced expression of LamB, the usual receptor for λ. As a consequence of host coevolution, the adaptive landscape of the virus changed such that selection favouring four of the six virus intermediates became stronger after the host evolved resistance, thereby accelerating virus populations along the path to using the new OmpF receptor. This dependency of viral fitness on host genotype thus shows an important role for coevolution in the origin of the new viral function.

Funder

John Hannah endowment from Michigan State University

BEACON Center for the Study of Evolution in Action

National Science Foundation Graduate Research Fellowship Program

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3