The strength of the biodiversity–ecosystem function relationship depends on spatial scale

Author:

Thompson Patrick L.12ORCID,Isbell Forest3,Loreau Michel4,O'Connor Mary I.12,Gonzalez Andrew5

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

2. Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

3. Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA

4. Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200 Moulis, France

5. Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1

Abstract

Our understanding of the relationship between biodiversity and ecosystem functioning (BEF) applies mainly to fine spatial scales. New research is required if we are to extend this knowledge to broader spatial scales that are relevant for conservation decisions. Here, we use simulations to examine conditions that generate scale dependence of the BEF relationship. We study scale by assessing how the BEF relationship (slope and R 2 ) changes when habitat patches are spatially aggregated. We find three ways for the BEF relationship to be scale-dependent: (i) variation among local patches in local (α) diversity, (ii) spatial variation in the local BEF relationship and (iii) incomplete compositional turnover in species composition among patches. The first two cause the slope of the BEF relationship to increase moderately with spatial scale, reflecting nonlinear averaging of spatial variation in diversity or the BEF relationship. The third mechanism results in much stronger scale dependence, with the BEF relationship increasing in the rising portion of the species area relationship, but then decreasing as it saturates. An analysis of data from the Cedar Creek grassland BEF experiment revealed a positive but saturating slope of the relationship with scale. Overall, our findings suggest that the BEF relationship is likely to be scale dependent.

Funder

Liber Ero

European Research Council

TULIP Laboratory of Excellence

US National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Killam Trusts

LTER Network Communications Office

Quebec Centre for Biodiversity Science

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3