Migratory birds are able to choose the appropriate migratory direction under dim yellow narrowband light

Author:

Romanova Nadezhda1ORCID,Utvenko Gleb23ORCID,Prokshina Anisia4ORCID,Cellarius Fyodor4ORCID,Fedorishcheva Aleksandra4ORCID,Pakhomov Alexander3ORCID

Affiliation:

1. Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991, Russia

2. Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia

3. Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia

4. Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia

Abstract

Currently, it is generally assumed that migratory birds are oriented in the appropriate migratory direction under UV, blue and green light (short-wavelength) and are unable to use their magnetic compass in total darkness and under yellow and red light (long-wavelength). However, it has also been suggested that the magnetic compass has two sensitivity peaks: in the short and long wavelengths, but with different intensities. In this project, we aimed to study the orientation of long-distance migrants, pied flycatchers ( Ficedula hypoleuca ), under different narrowband light conditions during autumn and spring migrations. The birds were tested in the natural magnetic field (NMF) and a changed magnetic field (CMF) rotated counterclockwise by 120° under dim green (autumn) and yellow (spring and autumn) light, which are on the ‘threshold’ between the short-wavelength and long-wavelength light. We showed that pied flycatchers (i) were completely disoriented under green light both in the NMF and CMF but (ii) showed the migratory direction in the NMF and the appropriate response to CMF under yellow light. Our data contradict the results of previous experiments under narrowband green and yellow light and raise doubts about the existence of only short-wavelength magnetoreception. The parameters of natural light change dramatically in spectral composition and intensity after local sunset, and the avian magnetic compass should be adapted to function properly under such constantly changing light conditions.

Funder

Russian Foundation for Basic Research

Zoological Institute of RAS

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3