From teeth to pad: tooth loss and development of keratinous structures in sirenians

Author:

Hautier Lionel12ORCID,Gomes Rodrigues Helder3,Ferreira-Cardoso Sérgio1,Emerling Christopher A.4,Porcher Marie-Lou1,Asher Robert J.5ORCID,Portela Miguez Roberto2,Delsuc Frédéric1ORCID

Affiliation:

1. Institut des Sciences de l’Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France

2. Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, UK

3. Centre de Recherche en Paléontologie—Paris (CR2P), UMR CNRS 7207, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France

4. Biology Department, Reedley College, Reedley, CA 93654, USA

5. Department of Zoology, University of Cambridge, Cambridge, UK

Abstract

Sirenians are a well-known example of morphological adaptation to a shallow-water grazing diet characterized by a modified feeding apparatus and orofacial morphology. Such adaptations were accompanied by an anterior tooth reduction associated with the development of keratinized pads, the evolution of which remains elusive. Among sirenians, the recently extinct Steller's sea cow represents a special case for being completely toothless. Here, we used μ-CT scans of sirenian crania to understand how motor-sensor systems associated with tooth innervation responded to innovations such as keratinized pads and continuous dental replacement. In addition, we surveyed nine genes associated with dental reduction for signatures of loss of function. Our results reveal how patterns of innervation changed with modifications of the dental formula, especially continuous replacement in manatees. Both our morphological and genomic data show that dental development was not completely lost in the edentulous Steller's sea cows. By tracing the phylogenetic history of tooth innervation, we illustrate the role of development in promoting the innervation of keratinized pads, similar to the secondary use of dental canals for innervating neomorphic keratinized structures in other tetrapod groups.

Funder

SYNTHESYS Project

Agence Nationale de la Recherche

European Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3