Affiliation:
1. Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
Abstract
Biological invasions can alter ecosystem stability and function, and predicting what happens when a new species or strain arrives remains a major challenge in ecology. In the mammalian gastrointestinal tract, susceptibility of the resident microbial community to invasion by pathogens has important implications for host health. However, at the community level, it is unclear whether susceptibility to invasion depends mostly on resident community composition (which microbes are present), or also on local abiotic conditions (such as nutrient status). Here, we used a gut microcosm system to disentangle some of the drivers of susceptibility to invasion in microbial communities sampled from humans. We found resident microbial communities inhibited an invading
Escherichia coli
strain, compared to community-free control treatments, sometimes excluding the invader completely (colonization resistance). These effects were stronger at later time points, when we also detected altered community composition and nutrient availability. By separating these two components (microbial community and abiotic environment), we found taxonomic composition played a crucial role in suppressing invasion, but this depended critically on local abiotic conditions (adapted communities were more suppressive in nutrient-depleted conditions). This helps predict when resident communities will be most susceptible to invasion, with implications for optimizing treatments based on microbiota management.
Funder
Swiss National Science Foundation
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献