Multiscale mechanics of mucociliary clearance in the lung

Author:

Nawroth Janna C.1ORCID,van der Does Anne M.2,Ryan (Firth) Amy34,Kanso Eva5ORCID

Affiliation:

1. Emulate Inc., Boston, MA 02210, USA

2. Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands

3. Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA

4. Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA

5. Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90033, USA

Abstract

Mucociliary clearance (MCC) is one of the most important defence mechanisms of the human respiratory system. Its failure is implicated in many chronic and debilitating airway diseases. However, due to the complexity of lung organization, we currently lack full understanding on the relationship between these regional differences in anatomy and biology and MCC functioning. For example, it is unknown whether the regional variability of airway geometry, cell biology and ciliary mechanics play a functional role in MCC. It therefore remains unclear whether the regional preference seen in some airway diseases could originate from local MCC dysfunction. Though great insights have been gained into the genetic basis of cilia ultrastructural defects in airway ciliopathies, the scaling to regional MCC function and subsequent clinical phenotype remains unpredictable. Understanding the multiscale mechanics of MCC would help elucidate genotype–phenotype relationships and enable better diagnostic tools and treatment options. Here, we review the hierarchical and variable organization of ciliated airway epithelium in human lungs and discuss how this organization relates to MCC function. We then discuss the relevancy of these structure–function relationships to current topics in lung disease research. Finally, we examine how state-of-the-art computational approaches can help address existing open questions. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.

Funder

Hasting Foundation

EU Marie Curie Global Fellowship

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3