The biology of spermatogenesis: the past, present and future

Author:

Cheng C. Yan1,Mruk Dolores D.1

Affiliation:

1. The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, 1230 York Avenue, New York, NY 10065, USA

Abstract

The physiological function of spermatogenesis in Caenorhabditis elegans , Drosophila melanogaster and mammals is to produce spermatozoa (1n, haploid) that contain only half of the genetic material of spermatogonia (2n, diploid). This half number of chromosomes from a spermatozoon will then be reconstituted to become a diploid cell upon fertilization with an egg, which is also haploid. Thus, genetic information from two parental individuals can be passed onto their offspring. Spermatogenesis takes place in the seminiferous epithelium of the seminiferous tubule, the functional unit of the mammalian testis. In mammals, particularly in rodents, the fascinating morphological changes that occur during spermatogenesis involving cellular differentiation and transformation, mitosis, meiosis, germ cell movement, spermiogenesis and spermiation have been well documented from the 1950s through the 1980s. During this time, however, the regulation of, as well as the biochemical and molecular mechanisms underlying these diverse cellular events occurring throughout spermatogenesis, have remained largely unexplored. In the past two decades, important advancements have been made using new biochemical, cell and molecular biology techniques to understand how different genes, proteins and signalling pathways regulate various aspects of spermatogenesis. These include studies on the differentiation of spermatogonia from gonocytes; regulation of spermatogonial stem cells; regulation of spermatogonial mitosis; regulation of meiosis, spermiogenesis and spermiation; role of hormones (e.g. oestrogens, androgens) in spermatogenesis; transcriptional regulation of spermatogenesis; regulation of apoptosis; cell–cell interactions; and the biology of junction dynamics during spermatogenesis. The impact of environmental toxicants on spermatogenesis has also become an urgent issue in the field in light of declining fertility levels in males. Many of these studies have helped investigators to understand important similarities, differences and evolutionary relationships between C. elegans , D. melanogaster and mammals relating to spermatogenesis. In this Special Issue of the Philosophical Transactions of the Royal Society B: Biological Sciences , we have covered many of these areas, and in this Introduction , we highlight the topic of spermatogenesis by examining its past, present and future.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3