Wolbachia strain w AlbB maintains high density and dengue inhibition following introduction into a field population of Aedes aegypti

Author:

Ahmad Noor Afizah1,Mancini Maria-Vittoria2,Ant Thomas H.2,Martinez Julien2ORCID,Kamarul Ghazali M. R.1,Nazni Wasi A.1,Hoffmann Ary A.3,Sinkins Steven P.2ORCID

Affiliation:

1. Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588 Kuala Lumpur, Malaysia

2. MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK

3. University of Melbourne, Bio21 Institute and the School of BioSciences, 30 Flemington Road, Parkville, Victoria 3052, Australia

Abstract

Aedes aegypti mosquitoes carrying the w AlbB Wolbachia strain show a reduced capacity to transmit dengue virus. w AlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that w AlbB releases can be an effective dengue control strategy, the long-term success depends on w AlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia– host coevolution in the field. Here, w AlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a w AlbB laboratory colony. The w AlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected w AlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that w AlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti , and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.

Funder

National Health and Medical Research Council

Wellcome Trust

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3