Carbon dioxide-dependent signal transduction in mammalian systems

Author:

Phelan D. E.12ORCID,Mota C.12,Lai C.12,Kierans S. J.12,Cummins E. P.12ORCID

Affiliation:

1. School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland

2. Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

Carbon dioxide (CO 2 ) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of ‘Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO 2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO 2 -dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO 2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO 2 -dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO 2 -dependent signalling is elicited with a view to better understanding the complex physiological response to CO 2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO 2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO 2 -dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO 2 . In considering these core hubs of CO 2 -dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.

Funder

Science Foundation Ireland

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3