Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions

Author:

Dai Longzhen12ORCID,He Guowei12,Zhang Xiang12ORCID,Zhang Xing12

Affiliation:

1. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Abstract

Fish schools are fascinating examples of macro-scale systems with collective behaviours. According to conventional wisdom, the establishment and maintenance of fish schools probably need very elaborate active control mechanisms. Sir James Lighthill posited that the orderly formations in fish schools may be an emergent feature of the system as a result of passive hydrodynamic interactions. Here, numerical simulations are performed to test Lighthill’s conjecture by studying the self-propelled locomotion of two, three and four fish-like swimmers. We report the emergent stable formations for a variety of configurations and examine the energy efficiency of each formation. The result of this work suggests that the presence of passive hydrodynamic interactions can significantly mitigate the control challenges in schooling. Moreover, our finding regarding energy efficiency also challenges the widespread idea in the fluid mechanics community that the diamond-shaped array is the most optimized pattern.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference49 articles.

1. Flying insect swarms

2. Emergent dynamics of laboratory insect swarms

3. Structure of a fish school;Breder CM;B. Am. Mus. Nat. Hist.,1951

4. Formation Flight of Birds

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3