Abnormal arachidonic acid metabolic network may reduce sperm motility via P38 MAPK

Author:

Yu Lisha1,Yang Xiaojing1,Ma Bo1,Ying Hanjie2ORCID,Shang Xuejun3,He Bingfang1,Zhang Qi1ORCID

Affiliation:

1. College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China

2. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China

3. Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, People's Republic of China

Abstract

Asthenozoospermia is a common cause of male infertility, the aetiology of which remains unclear in 50–60% of cases. The current study aimed to characterize metabolic alterations in asthenozoospermic seminal plasma and to explore the signalling pathways involved in sperm motility regulation. At first, high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry was used to detect the targeted metabolic network of arachidonic acid (AA). Metabolomic multivariate data analysis showed significant distinction of AA metabolites between asthenozoospermic and healthy seminal plasma. AA as well as its lipoxygenase (LOX) and cytochrome P450 metabolites were found to be abnormally increased, while cyclooxygenase (COX) metabolites were complicatedly disturbed in asthenozoospermic volunteers compared with those in healthy ones. In vitro experiments and western blot analysis of sperm cells revealed a decrease in sperm motility and upregulation of sperm phosphor-P38 induced by AA. P38 inhibitor could increase AA-reduced sperm motility. Also, all the inhibitors of the three metabolic pathways of AA could block AA-induced P38 mitogen-activated protein kinase (MAPK) activation and further improve sperm motility. We report here for the first time that an abnormal AA metabolic network could reduce sperm motility via P38 MAPK activation through the LOX, cytochrome P450 and COX metabolic pathways, which might be an underlying pathomechanism of asthenozoospermia.

Funder

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3