Seismic modelling of the Earth’s large-scale three-dimensional structure

Author:

Abstract

Several different kinds of seismological data, spanning more than three orders of magnitude in frequency, have been employed in the study of the Earth’s large-scale three-dimensional structure. These yield different but overlapping information, which is leading to a coherent picture of the Earth’s internal heterogeneity. In this article we describe several methods of seismic inversion and intercom pare the resulting models. Models of upper-mantle shear velocity based upon mantle waveforms (Woodhouse & Dziewonski ( J. geophys. Res . 89 , 5953-5986 (1984))) ( f ≲ 7 mHz) and long-period body waveforms ( f ≲ 20 mHz; Woodhouse & Dziewonski ( Eos, Wash . 67 , 307 (1986))) show the mid-oceanic ridges to be the major low-velocity anomalies in the uppermost mantle, together with regions in the western Pacific, characterized by back-arc volcanism. High velocities are associated with the continents, and in particular with the continental shields, extending to depths in excess of 300 km. By assuming a given ratio between density and wave velocity variations, and a given mantle viscosity structure, such models have been successful in explaining some aspects of observed plate motion in terms of thermal convection in the mantle (Forte & Peltier ( J. geophys. Res . 92 , 3645-3679 (1987))). An im portant qualitative conclusion from such analysis is that the magnitude of the observed seismic anomalies is of the order expected in a convecting system having the viscosity, tem perature derivatives and flow rates which characterize the mantle. Models of the lower mantle based upon P-wave arrival times ( f ≈ 1 Hz; Dziewonski ( J. geophys. Res . 89 , 5929-5952 (1984)); Morelli & Dziewonski ( Eos, Wash . 67 , 311 (1986))) SH waveforms ( f ≈ mHz; Woodhouse & Dziewonski (1986)) and free oscillations (Giardini et al . ( Nature, Lond . 325 , 405-411 (1987); J. geophys. Res. 93 , 13716—13742 (1988))) ( f ≈ 0.5-5 mHz) show a very long wavelength pattern, largely contained in spherical harmonics of degree 2, which is present over a large range of depths (1000-2700 km). This anomaly has been detected in both compressional and shear wave velocities, and yields a ratio of relative perturbations in v s and v P in the lower mantle in the range 2-2.5. Such values, which are much larger than has sometimes been assumed, roughly correspond to the case that perturbations in shear modulus dominate those in bulk modulus. It is this anomaly that is mainly responsible for the observed low-degree geoid undulations (Hager et al. Nature, Lond . 313 , 541-545 (1985))). In the upper part of the lower mantle this pattern consists of a high-velocity feature skirting the subduction zones of the Pacific and extending from Indonesia to the Mediterranean, with low velocities elsewhere; thus it appears to be associated with plate convergence and subduction. The pattern of wave speeds in the lowermost mantle is such that approximately 80% of hot spots are in regions of lower than average velocities in the D" region. The topography of the core-mantle boundary, determined from the arrival times of reflected and transmitted waves (Morelli & Dziewonski ( Nature, Lond . 325 , 678-683 (1987))), exhibits a pattern of depressions encircling the Pacific, having an amplitude of approximately ± 5 km, which has been shown to be consistent with the stresses induced by density anomalies inferred from tom ographic models of the lower mantle (Forte & Peltier ( Tectonphysics (In the press.) (1989))). By using both free oscillations (Woodhouse et al . ( Geophys. Res. Lett . 13 , 1549-1552 (1986))) and travel-time data (Morelli et al . ( Geophys. Res. Lett . 13 , 1545—1548 (1986))), the inner core has been found to be anisotropic, exhibiting high velocities for waves propagating parallel to the Earth ’s rotation axis and low velocities in the equatorial plane. Tomographic models represent an instantaneous, low-resolution image of a convecting system. They require for their detailed interpretation knowledge of mineral and rock properties that are, as yet, poorly known but that laboratory experiments can potentially determ ine. The fact that the present distribution of seismic anomalies must represent the current configuration of therm al and compositional heterogeneity advected by m antle flow, imposes a complex set of constraints on the possible modes of convection in the m antle of which the implications have not yet been worked out; this will require num erical modelling of convection in three dimensions, which only recently has become feasible. Thus the interpretation of the ‘geographical’ information from seismology in terms of geodynamical processes is a matter of considerable complexity, and we may expect that a number of the conclusions to be drawn from the seismological results lie in the future.

Publisher

The Royal Society

Subject

General Engineering

Reference58 articles.

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3